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Abstract. A spherical harmonic model of the lunar gravity field complete to
degree and order 70 has been developed from S band Doppler tracking data from
the Clementine mission, as well as historical tracking data from Lunar Orbiters

1-5 and the Apollo 15 and 16 subsatellites. The model combines 361,000 Doppler
observations from Clementinewith 347,000 historical observations. The historical

data consist of mostly 60-s Doppler with a noise of 0.25 to several mm/s. The
Clementine data consist of mostly 10-s Doppler data, with a data noise of 0.25

mm/s for the observations from the Deep Space Network, and 2.5 mm/s for the
data from a naval tracking station at Pomonkey, Maryland. Observations provided
Clementine, provide the strongest satellite constraint on the Moon's low-degree
field. In contrast the historical data, collected by spacecraft that had lower periapsis
altitudes, provide distributed regions of high-resolution coverage within +29 ° of
the nearside lunar equator. To obtain the solution for a high-degree field in the
_bsence of a uniform distribution of observations, we applied an a priori power law
constraint of the form 15 × lO-S/l 2 which had the effect of limiting the gravitational
power and noise at short wavelengths. Coefficients through degree and order 18 are
not significantly affected by the constraint, and so the model permits geophysical
analysis of effects of the major basins at degrees 10-12. The GLGM-2 model
confirms major features of the lunar gravity field shown in previous gravitational
field models but also reveals significantly more detail, particularly at intermediate
wavelengths (103 kin). Free-air gravity anomaly maps derived from the new model

show the nearside and farside highlands to be gravitationally smooth, reflecting a
state of isostatic compensation. Mascon basins (including Imbrium, Serenitatis,
Crisium, Smythii, and Humorum) are denoted by gravity highs first recognized
from Lunar Orbiter tracking. All of the major mascons are bounded by annuli
of negative anomalies representing significant subsurface mass deficiencies. Mare

Orientale appears as a minor mascon surrounded by a horseshoe-shaped gravity
low centered on the Inner and Outer Rook rings that is evidence of significant
subsurface structural heterogeneity. Although direct tracking is not available over ,
a significant part of the lunar farside, GLGM-2 resolves negative anomalies that
correlate with many farside basins, including South Pole-Aitken, Hertzsprung,
Korolev, Moscoviense, Tsiolkovsky, and Freundlich-Sharonov.

Introduction

Until the launch of Clementine, on January 24, 1994,
the sources of tracking data for gravity models derived
by U.S. investigators have been the Lunar Orbiters and
the Apollo spacecraft. The Lunar Orbiters were in-
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serted into elliptical orbits with periapses of 50 to 100
km above the lunar surface. The Apollo spacecraft were
placed in near circular orbits at low inclinations with a
mean altitude of 100 km, although some tracking was
acquired from altitudes as low as 10 to 20 km. The
tracking data sampled the gravity field of the Moon at
a resolution unprecedented for orbiting spacecraft, at
either the Earth, Venus, or Mars. However, the spatial
coverage of the tracking was incomplete, with no direct
tracking data available over large portions of the lunar
farside. During the initial investigations, in the 1960s
and 1970s, researchers were limited in the size of the
spherical harmonic solutions that could be developed
by the computers then available. Because of the power
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of the higher degree harmonics in the tracking data, the
early solutions encountered severe difficulties with the

aliasing of the high-degree signal into the lower degree
terms. In an effort to exhaust the available signal in the

tracking data, other methods were employed to map the

lunar gravity field. These alternate methods included
the estimation of discrete masses over the lunar surface,

or the mapping of the accelerations experienced by o_r-
biting spacecraft in the line of sight (LOS) between the

spacecraft and tracking station.
A selection of the solutions for the lunar gravity field

that have been developed since the 1960s is summa-
rized in Table 1. The landmark solutions include those

of Muller and Sjogren [1968], Williams et al: [1973],
Sjogren et al. [1974a], Ferrari [1977], Bills and Ferrari

[1980], and Konopliv et al. [1993]. The analysis of the
Lunar Orbiter data by Muller and Sjogren [1968] led to
the discovery of the mass concentrations ("mascons")

under the ringed lunar maria. Williams et al. [1973]
employed laser ranging to retroflectors left on the lunar
surface in combination with lunar gravity solutions de-

rived from radiometric tracking. The lunar laser rang-

ing data are sensitive to the second-degree and third-
degree gravity field harmonics, through their influence
on the lunar physical librations [Dickey et al., 1994].

Sjogren et al. [1974a] used data from the Apollo 15 and
16 subsatelIites to map the nearside of the Moon h:29 °

in latitude and -4-100' in longitude, using both LOS
accelerations and the estimation of discrete masses on

the lunar surface. The Apollo subsatellites marked the
first time an extensive amount of data was acquired

from a lunar satellite in low-altitude (100 km) near-
circular orbit. The command and service modules of

the Apollo spacecraft were also located in low-altitude,
near-circular orbits. In some cases, these spacecraft

came as low as 12 to 20 km from the lunar surface; how-
ever, these data were limited spatially and temporally.

The data from Apollo missions 8 and 12, in combination
with the Lunar Orbiter data, were used by Wong et al.

[1971] to solve for 600 discrete masses over the nearside
(+600 in latitude and +950 in longitude). Data from

Apollo missions 14, 15, 16, 17, were used by Muller et

al. [1974], and Sjogren et al. [1972a,b; 1974b,c] to map
the LOS accelerations.

Ferrari [1977] derived mean elements from short-arc

fits to the tracking data. Ferrari [1977] developed a

16th degree spherical harmonic solution that was among
the first to show plausible correlations between a map

of surface gravity anomalies and farside lunar features,
such as Mendeelev, Korolev, and Moscoviense. Bills

and Ferrari [1980] combined much of the data used by

previous investigators, such as the Lunar Orbiter data,
the Apollo data from Wong et al. [1971], the tracking of
the Apollo 15 and 16 subsatellites, and lunar laser rang-

ing. They developed a 16th degree spherical harmonic
solution that remained the best lunar gravity model for
the next 13 years.

Konopliv et al. [1993] developed a 60th degree model

from the tracking of the Lunar Orbiters and the Apollo
subsatellites. Taking advantage of the high speed and
memory capacity of more modern computers, this model
represented the first realistic attempt to exhaust the

gravity signal from the low periapse satellites in a high-
degree spherical harmonic solution. This model has ex-
cellent performance in terms of its root mean square

(RMS) fit to the tracking data, and the map of the
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Table 1. Previous Lunar Gravity Analyses

Reference Data used Comment

Muller and Sjogren [1968]

Lorell and Sjogren [1968]

Won 9 et at. [1971]
Michael and Blackshear [1972]

Sjogren et al. [1972a,b; 1974b,c];
Muller et ai. [1974]

Sjogren et al. [1974a]

Ferrari [1977]

Ananda [1977]
Bryant and Williamson [1974]

Blackshear and Gapcynski [1977]

Williams et al. [1973]

Ferrari et al. [1980]
Bills and Ferrari [1980]

Konopliv et al. [1993]

Dickey et al. [1994]

Lunar Orbiters

Lunar Orbiters

Apollo 8, 12
Lunar Orbiters

Apollos 14-17

Apollo subsatellites
LO-5 and Apollo subsatellites

Explorer 49

Explorers 35 and 49

Lunar laser ranging (LLR)
LLR and LO-4

LLR, LO 1-5, Apollo subsatellites,
and Apollo 8,12

LO 1-5 and Apollo subsatellites
LLR

Discovery of lunar mascons.

4x4 spherical harmonic solution + zonals to 1=8.

Solution for discrete masses on !!ear side.

13x13 spherical harmonic solution.

Mapped line of sight (LOS) accelerations
with data from as low as 12-20 km altitude.

Solve for LOS and discrete masses.

16x16 spherical harmonic solution.
Solve for discrete masses.

3x3 spherical harmonic solution
from Keplerian mean elements.

Zonal solution, J2 - J6 only
from Keplerian mean elements.

16x16 spherical harmonic solution

60x60 spherical harmonic solution.
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lunargravityanomaliesappearssmoothwhenmapped
ona surfaceat 100km altitude. However,thehigh-
degreetermshaveexcessivepower,andwhenthegrav-
ity anomaliesaremappedontothelunarsurface,nu-
merollsartifactsbecomeapparent,whichmakethemod-
elunsatisfactoryforuseingeophysicalstudies.Thegoal
ofthenewanalysiswastodevelopalunargravitymodel
that(1)includedboththehistoricaltrackingdatafrom
theLunarOrbitersandtheApollosubsatellites,aswell
asthenewdatafromClementine; (2) attenuated spu-

rious power in the high-degree terms; and (3) produced
a model suitable for use in geophysical studies of the

Moon when used in conjunction with the Clementine
laser altimeter data.

Data

The data in GLGM-2 consist of the Doppler track-

ing of the U.S. Lunar Orbiter Satellites 1 to 5 (referred
to by shorthand as LO-1, LO-2, etc., for the remain-
der of this paper), the Apollo 15 and 16 subsatellites,
and the Clementine spacecraft. Other data, such as

the tracking from the Explorers 35 and 49 and S band
tracking from tracking of the Apollo command and ser-

vice modules, could not be located, even after searches
at the National Space Science Data Center (NSSDC),

the Jet Propulsion Laboratory (JPL), and the Johnson

Space Center (JSC). Explorers 35 and 49 were placed in
high lunar orbits, and were sensitive to the low-degree
harmonics [Bryant and Williamson, 1974; Gapcynski et

al., 1975; Blackshear and Gapcynski, 1977]. In addi-
tion, these spacecraft were tracked by VHF, not S band

tracking, and so were noisier because of the increased
sensitivity tO the ionosphere, and the solar plasma (R.
Williamson, personal communication, 1994). Other ex-

isting data which might be used include the tracking
of the Soviet Luna spacecraft. These spacecraft are lo-
cated in complementary, frequently higher inclination
orbits than the U.S. Lunar Orbiters and the Apollo

spacecraft. The analysis of the limited amount of Luna

data is discussed by Sagitov et al. [1986] but was not
pursued in our analysis.

The orbit characteristics of Lunar Orbiter spacecraft
and the Apollo subsatellites are summarized in Table 2.
In general, the Lunar Orbiters were placed in elliptical

orbits about the Moon, with periods of 200 to 210 min.

Periapse heights ranged from 30 to 210 km, depending
on the mission phase. In addition, periapsis and, con-

sequently, the region of highest resolution was almost
always placed near the lunar equator. Lunar Orbiters

1 to 3 had low-inclination orbits (12 ° to 21°). Lunar
Orbiters 4 and 5 had near-polar inclinations of about

Table 2. Orbits of Lunar Spacecraft

Spacecraft Date Periapse Period

Height, km min

Semimajor Eccentricity Inclination
Axis, km deg

Lunar Orbiter 1 Aug. 14, 1966 189 218 2766 0.3031 12.2
Aug. 21, 1966 57 209 2693 0.3335 12.0
Aug. 25, 1966 41 206 2670 0.3336 12.1

Lunar Orbiter 2 Nov. 10, 1966 196 218 2772 0.3021 12.0
Nov. 15, 1966 50 208 2689 0.3353 11.9
Dec. 8, 1966 43 210 2702 0.3408 17.6
Apr. 14, 1967 69 209 2693 0.3289 17.2
June 27, 1967 113 212 2716 0.3184 16.5
July 24, 1967 98 212 2716 0.3240 16.1

Lunar Orbiter 3 Feb. 9, 1967 210 215 2744 0.2899 21.0
Feb. 12, 1967 55 209 2689 0.3331 20.9
Apr. 12, 1967 59 207 2680 0.3294 21.2
July 17, 1967 144 212 2722 0.3088 21.0
Aug. 30, 1967 145 131 1968 0.0435 20.9

Lunar Orbiter 4 May 8, 1967 2706 721 6150 0.2773 85.5
June 6, 1967 75 501 4820 0.6238 84.9
June 9, 1967 77 344 3753 0.5163 84.4

Lunar Orbiter 5 Aug. 5, 1967 195 505 4852 0.6017 85.0
Aug. 7, 1967 100 501 4822 0.6185 84.6
Aug. 9, 1967 100 191 2537 0.2760 84.7
Oct. 10, 1967 198 225 2832 0.3155 85.2

Apollo 15 subsatellite Aug. 29, 1971 89 118 i858 0.0167 151.0
Apollo 16 subsatellite Apr. 27, 1972 73 119 1849 0.0205 169.3
Clementine Feb. 19, 1994 402 474 4651 0.5400 89.5

Feb. 21, 1994 398 299 3418 0.3755 89.3
Feb. 22, 1994 383 299 3414 0.3789 89.4
Mar. !1, 1994 400 298 3414 0.3738 89.8
Mar. 27, 1994 447 298 3414 0.3598 90.1
Apr. 11, 1994 427 298 3415 0.3657 90.0



16,342 LEMOINEETAL.:A 70THDEGREELUNARGRAVITYMODEL(GLGM2)

850. TheLunarOrbitersweretrackedby the anten-
naeof theDeepSpaceNetwork(DSN),principallyat
stations12(Goldstone,California),41 (Canberra, Aus-
tralia), 61 and 62 (Madrid, Spain). The data consist of
mostly 60-s two-way and three-way Doppler, with noise

ranging from 0.35 to occasionally as high as 5 mm/s on
some arcs.

Each Lunar Orbiter spacecraft had two mission phases:

a primary mission devoted to photographic mapping,
with intense tracking, and an extended mission with
sparser tracking. The attitude control system of the

Lunar Orbiters was uncoupled in pitch and yaw, so
that each time the spacecraft changed its orientation,

a spurious acceleration was imparted to the spacecraft
[Konopliv el al., 1993]. The maneuvers were most

extensive during the photographic (primary) mission
phases but also occurred during the extended missions.
The times of these maneuvers are known, so that their

effects can be accommodated by estimating three-axis
accelerations, radial, along-track, and cross-track to the

orbit at the time of the maneuvers. During the photo-
graphic missions, as many as 14 sets of attitude maneu-
vers occurred per day. Maneuvers closely spaced in time

were combined, and a single set of acceleration param-
eters was estimated to account for the attitude-induced

orbit perturbations. Also, because of the numerous ma-
neuvers, during the photographic phases of the Lunar

Orbiter missions, data arcs were limited to no longer
than one day. The LO-3 spacecraft was briefly inserted
into a near-circular orbit about the Moon, simulating

the orbit planned for the then future Apollo missions;
however, sparse tracking limited the amount of data
that was returned from this orbit.

The Apollo 15 and Apollo 16 spacecraft deployed sub-
satellites in lunar orbit. These spacecraft, designed to

study the magnetic fields, plasmas, and energetic par-
ticles in the vicinity of the Moon, also carted S band

transponders to support high-precision gravity mapping
of the Moon [Coleman et al., 1972; Anderson et al.,

1972a,b]. The spacecraft were spin stabilized and did
not use any thrusters to maintain their attitude, making
the data much cleaner than the tracking data from the
Lunar Orbiters. The two subsatellites were deployed

by the Apollo 15 and 16 command modules in near-

circular, retrograde orbits of the Moon (inclinations of

1520 and 169°). The two spacecraft were tracked by the
antennae of the Manned Space Flight Network (MSFN)
[Sjogren et al., 1974a]. The spacecraft permitted a uni-

form mapping of the nearside of the Moon up to about
29°N or S from a mean altitude of 100 km. Unfor-

tunately, the satellites did not use satellite-to-satellite

tracking to permit acquisition of data while flying over
the lunar farside.

The Ciementine spacecraft was launched from Van-
denburg Air Force Base on January 24, 1994, and be-
came the first U.S. spacecraft to return to lunar orbit

in almost 20 years [Nozette et al., 1994]. CIementine
carried an S band transponder suitable for gravity map-

Orbiters, whose orbit periapses were close to the lu-
nar equator, for Clementine the periapsis was located

near 30°S during the first month of mapping, and near
30°N during the second month in lunar orbit. Clemen-
tine was tracked by the 26-m and 34-m antennae of the

DSN, as well as by the 30-m Pomonkey antenna op-
erated by the Naval Research Laboratory in southern

Maryland. The data from Clementine were predomi-
nantly two-way Doppler, averaged over 10 s. The noise

of the DSN data averaged 0.25 to 0.30 ram/s, whereas
the noise of the Pomonkey data typically ranged from

2.5 to 3.0 mm/s. Clementine remained in orbit about
the Moon from February 19 to May 4, 1994. Nearly all
the available Clementine tracking data from the DSN
and Pomonkey were used in GLGM-2.

The available tracking data constrain the global grav-

ity field of the Moon at moderate resolution and pro-
vide higher resolution coverage in the equatorial regions.

The Doppler data available below 500 km are illustrated
in Figure 1. It is evident from these figures that lunar
librations and parallax allow direct tracking of space-
craft over the poles to 60°N or S on the farside and to

4-120 o longitude, where 0° longitude is the meridian at
the center of the nearside.

Method of Solution

Definition

The lunar gravity potential, U, is modeled in spheri-

cal harmonics using the expression,

U = -- {Cl._ cos m_
T" 1=0 " " m=O

+ ,_tm sin mA) P_m(sin ¢) (1)

where the expansion is defined in spherical coordinates
with radius r, latitude ¢, and longitude )_; C'Im and

_'_m represent the normalized geopotential coefficients;
/3_m are the normalized associated Legendre functions

of degree I and order m; ae is the reference equatorial
radius; G is the universal constant of gravitation, and
M is the lunar mass. In a coordinate system whose

origin coincides with the center of mass, the degree one

terms of equation (1) vanish.
The geopotential coefficients may be unnormalized by

the following relation [Kaula, 1966],

Ctm = [(-l-m)!(21+ l)(2-6°m)] ½(l+ m)! Ctm (2)

where 30,_ is the Kronecker delta (30m = 0 for m#0, and
30,_ = 1 for m=0), and the equation can apply to C't,_
or Sl,,,. A solution for the lunar gravity field consists of

an estimate for the lunar GM, as well as the parameters

ping and was placed into an elliptical orbit about the Ctm and Stm. It is frequently convenient to refer to the

Moon, with a period of approximately 300 min and a total amplitude, Jt,_ _of a Cl,_ and St,_ coefficient pair,
mean periapsis altitude of 415 km. Unlike the Lunar where Jl,_ = v/CTm + S_m.
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Figure 1. Doppler data coverage below 500 km altitude in GLGM-2 for (a) Lunar Orbiter 1, (b)
Lunar Orbiter 2, (c) Lunar Orbiter 3, (d) Lunar Orbiter 4, (e) Lunar Orbiter 5, (f) the Apollo
15 subsatellite, (g) the Apollo 16 subsatellite, and (h) Clementine.

Processing of the Tracking Data

The data were divided into independent data spans,
known as arcs, based on knowledge of the spacecraft or-
bit characteristics, frequency of maneuvers, and avail-

ability of tracking data. The GLGM-2 solution was

based on 392 arcs, from 6 hours to 12 days in length, and
included 708,854 observations, of which 361,794 were
contributed by Clementine. For each orbital arc the

adjusted parameters included the orbital state, and a
single solar radiation pressure coefficient. To account
for the spurious accelerations induced by the attitude

control systems on the Lunar Orbiters and on some

Clementine arcs, three axis accelerations, radial, along-
track, and cross-track to the orbit were also estimated.

Doppler range-rate biases were estimated for each sta-

tion in each orbital arc to account for any residual
modeling error, such as frequency offsets, errors in the

station locations, and imprecise modeling of the tropo-
sphere and the ionosphere.

The force model included the third-body perturba-
tions of the Earth, the Sun, and all the planets, the
solar radiation pressure, the Earth-induced and solar-

induced lunar tides. A k_ Love number of 0.027, as de-
rived by Williams et al. [1987], was applied. The DSN

station coordinates were derived from Folkner [1993]

and mapped back to the 1960s and 1970s using station
velocities derived by the International Earth Rotation
Service (IERS) [1994]. The Hopfield [1971] model was
applied to correct the tracking data for tropospheric

refraction using the mean meteorological data for the
DSN sites from Chao [1974]. The coordinates of the

MSFN stations were initially provided by A. S. Kono-
pliv (personal communication, 1993), and these station

positions were adjusted in the global gravity solution.
The coordinates of the Earth tracking stations were cor-

rected for the displacement due to the solid tide and
ocean loading, although the latter is a small effect for
these data. The appropriate relativistic perturbations

are applied in the force model and the measurement
model. These include the Schwarzschild effect, or the
relativistic modification of the central body term, the
transformations from coordinate time to atomic time

as derived by Moyer [1981], and the modification of the

ray path due to relativity [Moyer, 1971]. We used the
1991 International Astronomical Union (IAU) model

[Davies et al., 1992] and the DE200 lunar and plan-
etary ephemerides [Standish, 1990]. The Davies et al.
[1992] reference has a typographical error in Table II (p.

381) that describes the lunar orientation: the parame-
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tersdefiningE3andE5shouldread:E3= 260.008°+
13.012001d, and E5 = 357.529°+ 0.985600 d (M. E.
Davies, personal communication, 1993).

Derivation of the Spherical Harmonic Solutions

The GEODYN orbit determination program was used

to process the lunar tracking data [Pavlis et al., 1997].
This program has previously been used to process in-

terplanetary tracking data from Mars and Venus [Smith
et al., 1993; Nerem et al., 1993]. GEODYN was used to

converge the orbital arcs and create the normal equa-
tions for the least squares solution. A companion pro-

gram to GEODYN, SOLVE [Ullman, 1994], was used to
derive the least squares solution. The normal equations

were grouped by satellite, spacecraft mission phase, and

orbital geometry. In selecting the a priori weights for
each set of data, consideration was given to the apparent

data noise (as deduced from analysis of the residuals on
a pass by pass basis), the periapse altitude, the length
of the data arc, the number of acceleration parameters
in an arc, and mission phase. Inspection of the maps of

the free-air gravity anomalies also played a role in the
selection of the weights. Sets of data that produced spu-

rious signals were rejected or downweighted. Through

inspection of the anomaly maps and other tests, arcs
with a high data noise (for instance, the LO-5 arcs
from August 22-26, 1967) were downweighted. Data
from LO-2 for December 1-6, 1966, and for LO-3 from

February 28 to March 8, 1967, received close scrutiny.
In both instances, tracking was nearly continuous, ex-

cept for occultation behind the limb of the Moon. This
should not be an issue, except that periapse was pre-

cessing west out of direct view from Earth, and reached
a minimum of 28-km altitude in the case of LO-2, and
38 km in the case of LO-3. In both cases, the proxim-

ity of periapsis to the surface, out of view of the direct

tracking from Earth, causes powerful perturbations in
the tracking data and, ultimately, an indeterminacy in
the location of gravity anomalies along the LO-2 and

LO-3 ground track on the farside. The result is striping
in the maps of the free air gravity anomalies, particu-

larly in the vicinity of Korolev. Downweighting of the
data and processing the LO-2 and LO-3 data over this

period in short (12-hour) arcs mitigates but does not
eliminate these artifacts in the farside anomaly maps.

In order to obtain a solution, it is necessary to solve

a least squares system of equations of the form [Lawson

and Hanson, 1974]

Az = B (3)

where A is the set of normal equations, z is a vector

representing the deviation of the coefficients from their
a priori values )C, and B is the residual vector. Unfortu-
nately, the lunar tracking data are nonuniform in both

spatial resolution and distribution. As a consequence,
it is not possible to obtain a solution directly, and an a

priori constraint must be applied. One approach is to

apply a constraint such that

(A+ P-_)z = B- P-_X (4)

The diagonal elements of the a priori covariance matrix,
/5, have the form

and
10-5

&t = K l_ (6)

where K is a scaling factor. Fermri [1977] applied this
constraint with &t= 35 x lO-S/l 2, and Konopliv et al.

[1993] used &l = 15 × 10-S/l 2. Bills and Ferrari [1980]
used a slightly different power law of the form, such that

1.4 × 10 -6
Pl = (7)

(21 + 1)2(l)(l + 1)

which, they argued, did not overestimate the low-
degree variances, as did the a priori power law used by

Fermri [1977]. The application of these sorts of con-
straints on the total spectral power of the coefficients

by degree prevents the high-degree terms from devel-

oping excessive power and allows a 70x70 solution to
be obtained. One difficulty with the application of this

Kaula-like power constraint is the selection of the ap-

propriate multiplier in the power law. For the Earth,
independent surface gravity measurements contrain the
amplitude of the power spectrum, whereas no such in-
formation is available for the Moon. Furthermore, a

tight constraint will mute the magnitude of the grav-

ity anomalies, whereas a weaker constraint might allow
more "real" power into the anomalies on the nearside,
at the expense of inducing spurious high frequency vari-
ations on the farside. A variant of this approach was de-

veloped by Konopliv and Sjogren [1994] and applied to

global solutions for the gravity fields of Venus and Mars
[Konopliv and Sjogren, 1994, 1995]. Their technique in-
volves applying a power law constraint both spatially

and spectrally. This is accomplished by writing observa-
tion equations on a global basis such that the anomalies
on the surface beyond a certain degree are zero to within

a prescribed sigma, determined from Kaula's rule. Since
we wished to mute the high frequency excursions in the

gravity anomalies, we preferred the constraint _t = 15
× 10-5/12, although we did test solutions with weaker
Kaula Constraints, such as _t= 30 x 10-5/I 2, and &t=

60 x 10-S/l 2. A detailed analysis using the spatial and
spectral approach was beyond the scope of this study,

but a comparison of this method as well as an eigen-
Value technique for stabilization for sparse matrices is a
current subject of investigation [Lemoine et al., 1996].

In the course of deriving our final spherical harmonic

solution, we developed a number of interim solutions to
evaluate our results. Some of the fields that we discuss

in this paper and their relationship to GLGM-2 are de-
scribed in Table 3. The data used in the derivation of

GLGM-2 are summarized in Table 4.

Calibration of GLGM-2

Once all the data had been processed and assembled
into the appropriate set of normal equations, we cal-

ibrated the final solution using the method of Lerch

[1991]. This method involves deriving subset solutions,

F
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Table 3. Lunar Gravity Solutions and Their Relationship to GLGM-2

Solution a Maximum Description

LUN60D 60x60

GLGM- 1 70x70

LGM-261 70x70

LGM-296a 70x70
GLGM-2 70x70

LGM-309b 70x70

LGM-309c 30x30

LGM-309d 70x70

Koaopliv et al. [1993] a priori solution.

Predecessor to GLGM-2, from Lemoine et al. [1994].
Does not include Apollo 16 subsatellite data.

Clementine data weighted at 0.5 cm/s.
Solution not calibrated.

Solution from Clementine data only.

New baseline solution prior to calibration.

Final calibrated solution from this paper (LGM-309a).

Same as GLGM-2, but uses power law constraint of 30 x 10-5/12.

Same data as GLGM-2, but with no power law constraint.

Same as GLGM-2, but with no Clementine data.

aUnless otherwise noted, all solutions used the a priori power law constraint of 15 x lO-S/l _.
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where a single constituent set of data is removed from

the nominal solution. The objective of the calibration

procedure is to adjust the initial data weight so that

the aggregate differences of the coefficients between the

subset and the master solution are the same as the ag-

gregate differences between the coefficient sigmas in the

subset and the master solution. The objective is to de-

rive a covariance matrix that more closely reflects the

intrinsic uncertainties in the data. This procedure has

been used extensively to calibrate the covariance matri-

ces of Earth gravity models [Marsh et al., 1988a, i990;

Nerem et al., 1994] and was also applied in the develop-

ment of GMM-1, a 50th degree and order solution for

Mars [Smith et al., 1993].

The calibration factor for each sphericM harmonic

degree is computed according to the following relation

from Lerch [1991]:

l - 2

KI = l -2 2 (8)

where Glm refers to both the Clm and Sire coefficients

from the master solution, Gtrn refer to the coefficients

from the subset solution, and (run and 8ira refer to the

coefficient sigmas from the master and the subset solu-

tions, respectively.

The average calibration factor for a set of data is

simply the average over some span of degrees l up to

lmax _ or

Imax gl

_/= Z Imp×-1 (9)
1=2

The parameter /_" defines the new scale factor for the

normal equations of the set of data whose weights we

wish to adjust. The summation is truncated at an in-

termediate degree, /max , which is usually not the max-

imum degree of the gravity solution. The calibration

factors for the high-degree terms may not be meaning-

ful, since these terms are dominated by the Kaula con-

straint rather than from the tracking data [Marsh et al.,

1988b]. The normal equations are then rescaled by the

relation
W

W' (10)
= K---i

and the a priori sigma on the test set of data is related

to the weight in the normal equation by the equation,

i

Table 4. Doppler Data Used in GLGM-2

Spacecraft Number Average Arc Total Number

of Arcs Length, his of Observations

Lunar Orbiter 1 48 21.76 44,503

Lunar Orbiter 2 75 16.38 76,421
Lunar Orbiter 3 55 17.77 54,163

Lunar Orbiter 4 11 70.16 48,734
Lunar Orbiter 5 51 33.74 47,690

Apollo 15 subsatellite 81 16.76 44,096

Apollo 16 subsatellite 35 4.55 31,453

Clementine 36 44.16 361,794

Total 392 708,854
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1

= (11)

If the initial weight has been appropriately selected,
then the constant of proportionality K should be close
to unity. A constant R greater than unity indicates

that the test set of data should be downweighted in the
least squares solution, and a value less than unity indi-

cates the data should receive more weight or emphasis
in the least squares solution. Each independent set of
data that contributes to the gravity solution may be

calibrated in this fashion. The new set of weights is
then used to produce the final calibrated solution.

Given the number of independent orbits, a strict ap-

plication of the calibration technique from Larch [1991]
would have required the calculation of an inordinate
number of master and subset solutions. Therefore, to

simplify the process, the data were divided into 11 man-

ageable sets, based upon satellite and orbit geometry.
The data from Lunar Orbiter 5, Clementine, the Apollo
subsatellites, and Lunar Orbiter 1 were calibrated indi-

vidually by satellite. For Lunar Orbiters 2, 3, and 4
the calibration sets were selected based on inclination

(in the case of LO-2), eccentricity (in the case of LO-
3), and periapse height (for LO-4). The relative data
weights between arcs in each set were fixed. Then all the
data in each set were adjusted, according to the calibra-

tions. We started with a baseline solution (LGM-296a)
that included all the data. Eleven subset solutions were

computed with respect to LGM-296a, complete to de-
gree and order 70. The calibration factors were calcu-

lated as per equations (8) and (9). The final calibrated
solution (GLGM-2) was derived using the calibration
factors derived from all 11 subset solutions.

Comparison of the RMS degree variance for the GL-
GM-2 coefficients and coefficient sigmas indicates that

the coefficient sigmas have greater power than the co-

efficients themselves for degrees l _> 30. As a conse-
quence, the calibration factors were calculated by aver-

aging the Kl (from equation (9)) only through degree

Table 5. Calibration Factors for the Doppler Data in
GLGM-2

Satellite Data Description Calibration

LO-5
LO-4, set 1
LO-4, set 2
LO-2, set I
LO-2, set 2
LO-3, set 1

LO-3, set 2

LO-1
Clementine
A-15ss a
A-16ss a

Primary mission.
Extended mission.
Primary mission, i = 12°.
Extended mission, i = 17°.
Primary and extended mission
(eccentricity = 0.28 to 0.33).
Extended mission
(eccentricity = 0.04).

1.245

1.252
1.362
1.629

1.553

1.818
2.761
1.523
1.530
1.175

aA-15ss = Apollo 15 subsatellite. A-16ss = Apollo 16 sub-
satellite.

30. Most of the calibration factors are already close to
unity and indicate that the a priori weights selected for

the data were approximately correct and that there is
no set of data that grossly distorts the solution. No rea-

sonable calibrations were derived for the high altitude
periapsis data from Lunar Orbiter 4, so the calibrations
from LO-4 set 2 were applied to the LO-4 set 1 data.
The LO-4 set 1 data are extremely weak because of the

high periapsis height (2700 km), relatively long period
(6 hours), and numerous attitude maneuvers. The fi-
nal calibration factors used to derive GLGM-2 from the

base model (LGM-296a) are summarized in Table 5.

For completeness, we show a complete table of the final
sigmas applied to the data in GLGM-2, following the

calibration procedure (see Table 6).

Results

Power of the Coefficients

The coefficient variances at degree l, o't(U), can be

represented according to the convenient relation from
Kaula [1966]:

t ] 1/2at(U) = (2/+ 1) -1 _ (d?._ + S_m) (12)
rn----0

The coefficient degree variances, for the I(onopliv et

al. [1993] field, and for GLGM-2 are shown in Fig-
ure 2. The coefficient degree variances are compared

with the signal of the power law applied in these grav-

ity solutions, of 15 x 10-5/I 2. The Konopliv et al.
[1993], Lun60d, field has power considerably in excess
of the power law. In contrast, the coefficient power of

GLGM-2 at the higher degrees is strongly attenuated
and falls below the power law. The coefficient vari-
ances for LGM-309c are also shown to illustrate the ef-

fect of omitting the application of the Kaula constraint
in the GLGM-2 solution. Solutions without a Kaula

constraint, where /max __ 30, simply would not invert.
It is apparent, even in truncating the solution at I = 30,

the high-degree terms develop excessive and unreason-
able power. Comparison of the GLGM-2 and the LGM-
309c solutions shows that the power law constraint has

a noticeable effect starting at about degree 18. We note

that most of the gravitational power associated with the
major mascon basins falls at degrees 10-12, where the
power law does not have significant influence. Thus in-

terpretations about the long wavelength compensation
state of the Moon [Zuber et al., 1994] based on a prelim-
inary version of this gravitational model are supported

by more detailed analysis of the gravity.
The coefficient sigma degree variances from GLGM-

2, Lun60d, and LGM-309d (GLGM-2 with no Clemen-
tine data) are illustrated in Figure 3. The scale dif-

ference in the coefficient sigmas between the Konopliv
et al. [1993] Lun60d field and GLGM-2 generation of

models is due to different schemes used to weight the
data. Konopliv et aL [1993] weighted data closer to
the RMS of fit, which overall was of the order of a few
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Table 6. Final Sigmas Assigned to Data Used in the GLGM-2 solution

16,347

Data Description Number of Number of Data Sigma

Arcs Observations cm/s

%

LO-1

LO-1

LO-2

LO-2
LO-2

LO-2

LO-3

LO-3

LO-3

LO-3

LO-3

LO-3

LO-4

LO-4

LO-5

LO-5

LO-5

LO-5
LO-5

LO-5

A-15ss b

A-15ss b

A-15ss b

A-16ss b

Clementine

Primary and extended mission. 42 39,885 2.76

Extended mission. Includes 6 4,618 5.52

10-day arc (Sept. 22 to Oct. 1, 1966).

Primary mission (Nov. 10 to Nov. 30, 1966). 10 32,226 1.36

Primary mission (Dec. 1 to Dec. 7, 1966). 13 17,389 2.72
Extended mission, set A a 32 19,975 1.63
Extended mission, set B a 20 6,831 2.82

Primary mission (Feb. 12, to Feb. 23, 1967). 12 19,368 3.11
Primary mission (Feb. 24, to Mar. 7, 1967). 18 9,926 2.69
Extended mission, set A s 3 1,164 1.55

Extended mission, set B a 7 4,459 4.66

Extended mission multiday arcs. 4 14,861 15.53

Near circular orbit (Sept. 1967). 11 4,385 !.82

Primary mission (May 1967). 5 32,551 3.33
Extended mission (June 1967). 6 16,183 1.25

Primary mission (Aug. 5 to Aug. 19, 1967). 16 17,393 1.25

Primary mission (Aug. 19 to 22, 1967): 3-day arc. 1 5,673 1.25
Primary mission (Aug. 22, 1967). 1 763 5.57

Primary mission (Aug. 23 to 24, 1967). 1 1,797 2.48
Primary mission (Aug. 26, 1967). 3 1,657 3.74

Extended mission (Oct. 1, 1967 to Jan. 29, 1968). 29 20,407 1.25

Sparse tracking. 2-3 day arcs. 11 2,940 4.59

Sparse tracking. 1-day arcs. 20 4,033 3.06

Sept., Oct., Dec., 1971 gravity campaigns. 50 37,123 2.16

35 31,453 3.53

36 361,794 1.36

aLO-2 and LO-3 extended mission data (set A) includes those arcs that had documented attitude maneuvers.

LO-2 and LO-3 extended mission data (set B) includes those arcs with no documented attitude maneuvers.
bA-15ss = Apollo 15 subsatellite; A-16ss = Apollo 16 subsatellite

mm/s. The intention of this approach was to mini-

mize Doppler residuals to produce a model optimized

for orbit prediction. In contrast, the a priori weights

in GLGM-2 were approximately 1 cm/s, and the data

were further downweighted in the calibration procedure.

Our approach was to minimize systematic sources of er-

ror in the force and measurement models that have a

tendency to produce striping correlated with satellite
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orbital ground tracks. Such structures are irrelevant

for orbit prediction applications, but they are nonphys-
ical and may mask subtle signals that could contain
information on the internal density distribution of the

planet. Our approach for data weighting was driven
by a desire to produce a gravity field useful for lunar

geophysics which manifests, to the extent possible, a re-
alistic pattern of gravity anomalies when mapped onto
the lunar surface.

Description of the Solution

Gravity anomalies from GLGM-2. The solu-

tion is complete to degree and order 70, correspond_
ing to a half wavelength resolution of approximately

2.60 (80 kin), where there is adequate data coverage.
When evaluated at the surface with a reference radius

of 1738 kin, and after removing the appropriate hydro-
static terms, free-air gravity anomalies have a range of
-294 to +358 mGals. The anomalies from GLGM-2 are

depicted in Plate l, and the projected errors from the

gravity field error covariance are shown in Figure 4.
The range in the free-air gravity anomalies is smaller
in GLGM-2 than in the Konopliv et al. [1993] solution,
which has a range of-454 to 529 reGals. The reason for

the difference is that the power of the high-degree terms
of GLGM-2 was attenuated to avoid the excessive orbit

striping evident in the Lun60d model, when the grav-
ity anomalies were downward continued to the surface
of the planet. Consequently, GLGM-2 underestimates

the expected power in the lunar gravity field at short

wavelengths.
The projected errors, depicted in Figure 4, range from

17 to 20 mGals on the equatorial nearside (where the

densest, low-altitude tracking data were obtained) to 45
regals on the high-latitude regions of the farside. The
33 regal contour essentially bounds the region where di-

rect tracking of the Apollo 15 subsatellite was obtained.
GLGM-2 shows that the lunar highlands are generally

characterized by low amplitude gravity anomalies that
indicate a state of isostatic equilibrium, consistent with

the highlands' age and origin as a near-global geochemi-
cal melt product [ Wood et al., 1970]. The model resolves
the major nearside mass concentrations or "mascons,"

represented as large positive gravity anomalies, first de-
duced from Lunar Orbiter tracking more than 20 years
ago [Muller and Sjogren, 1968]. The major mascons in-

elude [mbrium, Serenitatis, Crisium, Smythii, and Hu-
morum. The mascon anomalies are attributed to a com-

bination of the gravitational attraction of mare fill and
to uplift of the lunar Moho associated with the impac _

process.
GLGM-2 also resolves gravitational lows or moats

surrounding the major mascon basins on the nearside,
such as Imbrium, Serenitatis, Crisium, and Humorum.
After careful consideration, we are certain these fea-

tures are genuine features of the lunar gravity field, as
opposed to artifacts associated with "ringing" in the

spherical harmonic solution. They occur on the near-

side, in regions where there are independent tracks from
several satellites. In fact, Muller and Sjogren [1968]

noted the presence of these lows in their analysis of the
Lunar Orbiter data, but their observation received lit-

tle attention. Later, Muller et al. [1974] reported the
existence of lows surrounding Serenitatis and Crisium

in their analysis of the S band tracking of the Apollo
15 command module, which came to within 12 km of

Serenitatis. In a separate analysis [Neumann et al.,
1997] we reanalyzed Lunar Orbiter LOS Doppler data
and independently verified the presence of the annular

lows. These negative rings are much more conspicu-
ous in our model than in previous spherical harmonic

representations of the lunar gravity field, in part be-
cause of greater surficial coverage provided by Clemen-
tine at mid to high nearside latitudes, but also because

our field is evaluated at the surface rather than space-
craft altitude. We originally interpreted these annular

rings to be a consequence of lithospherie flexure in re-
sponse to surface loading of the lunar lithosphere by

the maria [Zuber et al.,, 1994]. However, subsequent
analysis [Williams et al., 1995], which considered flexu-
ral effects of both surface maria loading and subsurface

loads associated with crustal thinning, indicates that

anomaly amplitudes are in nearly all cases too large to
be explained by flexure alone. Similarly, the anomaly

magnitudes would require unrealistic amounts of brec-
elation to be attributed solely to ejecta fallback. Our

revised interpretation is that these features represent
crustal thickening related to basin formation or modifi-

cation [Neumann et al., 1996], but our hypothesis has
yet to be tested quantitatively.

Mare Orientale, with an age of 3.8 billion years is

the youngest of the major lunar impact basins, shows
a central mascon with a maximum amplitude of 188
regals, surrounded by a horse-shaped gravitational low

centered on the Inner and Outer Rook rings. The maxi-
mum amplitude of the bounding low is -275 mGals, but
its variability in shape and amplitude do not correlate

with surface topography (K.K. Williams and M.T. Zu-

bet, manuscript in preparation, 1997) and so represents
evidence for significant subsurface structural hetero-
geneity. The Mendel-Rydberg basin, just to the south

of Orientale, is barely resolved, with a low of approxi-
mately 22 reGals. Since Mendel-Rydberg has consider-

able topographic relief (6 km from rim to floor [Smith
et al., 1997]), the lack of a significant gravity anomaly

suggests this feature is almost fully compensated [Zuber
et al., 1994].

On the lunar farside, South Pole-Aitken is resolved

as a gravity low, with minima near Van de Graft (25°S,
185°E, -116 reGals), Apollo (44°S, 212°E,-102 regals),
and Antoniadi (75°S 180°E, -82 reGals). Given the am-

plitude of the anomaly compared to the basin depth of

12 km [Zuber et al., 1994], South Pole-Aitken must be
approximately 90% compensated; however, deviations

from compensation may well be a consequence of the

younger, smaller basins within its confines [Neumann
et al., 1996].

The GLGM-2 model resolves other farside basins such

as Hertzsprung, Mendeleev, Tsiolkovsky, Moscoviense,
and Freundlich-Sharonov. These basins, which do not

ir
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Figure 4. Projected gravity anomaly errors for GLGM-2, computed from the 70x70 error covari-

ance. The map is a mollweide projection centered on 270°E longitude, and the contour interval
is three reGals.

contain significant mare fill, are revealed as gravity lows

(see Table 7), consistent with the findings of earlier in-

vestigators [Ferrari, 1977; Ananda, 1977]. A concen-

trated gravity high of 325 regals is apparent directly

north of Korolev at 4-5°N, 202°E. This high is located in

a region which contains some of the highest topography

on the Moon. The anomalies on the farside of the Moon

sometimes appear stretched, compressed, or displaced

from the known centers of the basins. For instance,

both the centers of the gravity lows corresponding to

Tsiolkovsky and Mendeleev are displaced 4 o to the west

of the basin center noted in lunar imagery. This smear-

ing effect results from the lack of direct tracking over

much of the far side of the Moon. While the associ-

ation of anomalies with the farside basins is evidence

that the Doppler data are sensitive to mass anomalies

Table 7. GLGM-2 Gravity Anomalies for Prominent Lunar Basins and Maria

Feature Location GLGM-2 Gravity GLGM-2 Anomaly LGM-309b

Anomaly, mGals Error, mGals Anomaly, a mGals

Imbrium 341°E, 36°N 311 37 301
Crisium 58.5°E, 17°N 324 32 350

Mare Orientale 266°E, 19.5°S 188 29 211

Fecunditatis 52°E, 4°S 90 25 99

Nectar'is 34°E, 16°S 274 29 281

Smythil 86.6°E, 2.4°S 173 28 170

Humorum 320.5°E, 24°S 318 27 321
Serenitatis 19°E, 26°N 356 33 340

Nubium 345°E, 21°S -27 27 -37

Mendel-Rydberg 272°E, 52°S 22 41 -31
Freundlich-Sharonov 175°E, 18.5°N -36 40 -12

Hertzsprung 231.5°E, 1.5°N -87 33 -105

Moscoviense 147°E, 26°N -56 41 -61

Korolev 203°E, 4.5°S -48 36 -62

Mendeelev 141°E, 6°N -169 37 -175
South Pole-Aitken

185°E 25°S -116 40 -142

212°E 44°S -102 44 -115

180°E 75°S -82 44 -103

aThe LGM-309b solution is a test solution that used the power law constraint of 30 × 10-_//2. GLGM-2

used a power law constraint of 15 × 10-5/12.
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even in areas that lack direct tracking, it is quite certain
that the gravity field does not accurately represent the
anomaly amplitudes [ef. Solomon and Simons, 1996].

Consequently, geophysical analyses that incorporate re-
gions without direct tracking data should be done with

the greatest of caution.
A further characteristic of GLGM-2 is that the model

exhibits greater detail in the equatorial regions than at

higher latitudes. This variable resolution is a result of
the orbital coverge of the satellites contributing data
to GLGM-2 and is not an intrinsic feature of the lunar

gravity field.
Contribution of Clementine. To assess the con-

tribution of the Clementine data to the lunar gravi-
tational field, we computed a spherical harmonic so-

lution based only on these data and compared it to
the full GLGM-2 solution. The free-air anomalies from

the Clementine-only gravity solution (LGM-261), illus-
trated in Plate 2, have a range of -121 to 255 mGals

(compared to -294 to +358 mGals for GLGM-2). Due
to Clementine's polar orbit and global coverage, the
Clementine data now provide the strongest satellite con-
straint on the long wavelength gravitational signature of

the Moon. Various analyses presented in the following
sections underscore the contribution of the Clementine
data.

Comparison of the full GLGM-2 solution from Plate

1 With those from the Clementine-only solution (Plate
2) shows the extent to which the historic data are es-
sential for adding detail to GLGM-2, particularly in
the equatorial regions. Nonetheless, the major mas-

con basins can be discerned clearly from the Clementine
data alone. Orientale appears as a broad low, although
the mascon at the center is not resolved. The South

Pole-Aitken basin appears as a broad low with a mini-
mum of about -100 mGals. The Clementine-only free-

air anomaly map also illustrates the presence of the low
or moat, surrounding Imbrium (discussed above), which

confirms its existence using data from a completely in-
dependent satellite. Artifacts in the handling of the

Clementine data are apparent, as suggested by the ver-
tical striping near 135°E longitude on the farside.

Error analysis. Gravity anomaly errors, as com-

puted from the calibrated covariance of the GLGM-2
gravity solution, range from 17 reGals in the equatorial

regions of the nearside to 45 mGals in the higher lati-
tude regions of the lunar farside (see Figure 4). The er-
ror distribution correlates with the distribution of avail-

able tracking data (see Figure 1), and the proximity of
periapsis to the lunar equator for the eccentric lunar

orbiters. The gravity anomaly errors are listed in Table
7, along with the computed free-air gravity anomalies
of prominent lunar basins and maria. The GLGM-2

gravity anomaly values are compared with those from

LGM-309b, where the power law constraint was relaxed
to 30 x 10-5]1 _. Relaxing the power law constraint

increases the power in the field. However, the anoma-

lies computed from the LGM-309b field differ from the
GLGM-2 values by less than the predicted GLGM-2

gravity anomaly uncertainty.

The lunar geoid. The geoid, computed from the

GLGM-2 solution, is shown in Plate 3. The planet has

a total range in geoid space of-275 to 475 m. This com-
pares to total range of 200 m for the Earth and 2,000

m for Mars. Many lunar basins have prominent geoid
signatures. There is a broad-scale correlation of geoid

with topography (see Figure 5), with the exception of
the mascon basins (cf. Imbrium, Serenitatis, Crisium,
Humorum), which are geoid highs. Since these basins
are located at lower elevations, and since the total el-

evation change over these basins is small compared to
the total range in planetary topography, these mascon

basins appear as spikes in Figure 5. South Pole-Aitken
is revealed as a large and prominent geoid low with
a minimum of about -270 m. The uncertainty in the

GLGM-2 geoid also correlates with the tracking data
distribution and is nearly identical in shape to the free-

air gravity anomaly error map, depicted in Figure 4.

The projected errors from the GLGM-2 error covari-
ance range from 2 m on the equatorial nearside to 24 m
on the high latitude regions of the farside.

Tests With the RMS of Fit

A series of test arcs involving each satellite in the
gravity solution were selected to evaluate the perfor-
mance of the interim solutions. The RMS of fit was

computed for these arcs for the a priori Konopliv et

al. [1993] field, the GLGM-1 solution [Lemoine et al.,
1994], and the current solution, GLGM-2. The results
are summarized in Table 8. The fit to the Lunar Or-

biters 2, 4, and 5 are the same as with the Konopliv et
al. [1993] 60th degree and order model. We show slight
improvements in the orbital tests with Lunar Orbiter 1

and the Apollo 15 subsatellite and obtain a higher RMS
of fit for both the Apollo 16 subsatellite and Lunar Or-

biter 3. We attribute the somewhat higher fit on the

Apollo 16 subsatellite to the initial a priori weight for

these data (3 cm/s). This weight was selected since this
satellite was tracked at altitudes of less than 30 km just
prior to impacting the Moon ant the end of May 1972. It

appears now in retrospect that a higher a priori weight
would have been justified (i.e. 1 cm/s), especially since
these data were processed in arcs of only a few hours in
length.

For short arcs (1 to 2 days) of Clementine data, we

saw little difference in the RMS of fit to the tracking
data when using either a priori Konopliv et al. [1993]
model, and both GLGM-1 and GLGM-2. F-off'his rea-

son, our test set of Clementine arcs are longer - between
4 and 12 days in length. As would be expected, once the
data are added into GLGM-1 and GLGM-2, we see an

improved fit on these test arcs, compared to the Kono-
pliv et al. [1993] model.

Analysis of Coefficient Differences

The differences in the coefficient sigmas between GL-

GM-2 and Lun60d [Konopliv et al., 1993], normalized

by the coefficient sigmas from the GLGM-2 gravity
model are shown in Figure 6. These coefficient differ-

r"
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I I

0 5000 10000

Topography (meterm)

Figure 5. Geoid anomalies from GLGM-2 versus
Clementine-derived topography [Smith et aL, 1997].

ences are compared to the solution without the Clemen-

tine data (LGM-309d). Concentrating on the field be-

low degree 20, the figure shows that the Clementine
data have the most profound effect on the lower degree

portion of the field. In fact, the addition of Clemen-

tine changes the J2_, ,13, Jzl, J3s, J42, J44, and the

sectoral terms (the Jtm coefficients for which 1 = m)
through degree 10, by three to nine sigma. In Figure
7, we illustrate the percent difference in the coefficient
sigmas between the LGM-309d solution (no Clemen-

tine data) and the GLGM-2 solution. This figure il-
lustrates the sensitivity of the Clementine data to the
gravity field, and underscores the strength of this satel-

lite's contribution to the low degree (1 = 2 to 3), and
sectoral terms through degree 20. The sectoral terms

of the spherical harmonic expansion are purely longi-
tudinal [Kaula, 1966]. The sensitivity that Clementine

provides for these terms results from the polar orbit ge-
ometry of the spacecraft, as well as the strength and
quMity of the tracking data.

Of interest is to compare the solution for the low de-

gree terms from GLGM-2 with those derived from lu-
nar laser ranging. We present the comparisons in Table

9. The greatest discrepancies occur for ,/3, C_2, and

Cal. All other terms show reasonably close agreement.
We also include in Table 9 the coefficients from LGM-

309d (GLGM-2 with no Clementine data), to illustrate

Table 8. RMS of Fit Tests With Lunar Gravity Models

Gravity Field Spacecraft Number Average Arc Average RMS
of Arcs Length, hrs of fit, cm/s

Lun60d a LO-5 7 148.04 0.151

GLGM-1 b 0.172
GLGM-2 c 0.155

Lun60d LO-4 7 98.8 0.065
GLGM-1 0.082
GLGM-2 0.071

Lun60d LO-3 12 25.08 0.098
GLGM-1 0.207
GLGM-2 0.284

Lun60d LO-2 I 1 38.98 0.146
GLGM- 1 0.148
GLGM-2 0.147

Lun60d LO- 1 5 86.17 0.230
GLGM-1 0.111
GLGM-2 0.150

Lun60d A-15ss d 26 82.67 2.185
GLGM-1 2.041
GLGM:2 1.915

Lun60d A- 16ss d 36 4.48 0.115
GLGM-1 1.221
GLGM-2 0.158

Lun60d Clementine- - 5 " 206.40 0.296
GLGM-1 0.087
GLGM-2 O.093

a 60x60 spherical harmonic solution from Konopliv et at. [1993].

b 70x70 spherical harmonic solution from Lernoine et al. [1994].
c 70x70 spherical harmonic solution from this paper.
aA-15ss = Apollo 15 subsatellite. A-16ss = Apollo 16 subsatellite.

_7
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Coefficient differences between GI,GM-2 and LUN60D,
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Figure 6. Coefficient differences

[Konopliv et al., 1993] and GLGM-2,

sigmas from GLGM-2.

between Lun60d

normalized by the

the influence of Clementine on these low degree terms.

Comparison of the coefficients for J3 and C22 shows that

it is the Clementine data that change their estimates so

strongly. The strength of these determinations results

in part from the multiday arcs (4, 6, 10, and 12 days)

used to process the Clementine tracking data. C31 is

the most weakly determined of the low-degree terms

determined by lunar laser ranging (LLR), and the C31

coefficients derived from the satellite determined grav-

itational models agree more with each other than with
the LLR-determined value.

GM Determination

GLGM-2 included an adjustment for the lunar GM,

and we obtained 4902.80295 -4- 0.00224 km3/s 2. The

GLGM-2 estimate is compared with other values in Ta-

ble 10. The Ferrari et al. [1980] value of 4902.7993

+ 0.0029 km3/s 2 is determined largely from the high-

altitude tracking of the Lunar Orbiter 4 spacecraft. The

small sigma for the lunar GM in GLGM-1 is caused

by the over optimistic sigma applied to the Ciementine

Doppler data in that model of 0.50 cm/s. In contrast,

the sigma on the lunar GM in GLGM-2 is derived from a

calibrated solution, where the Clementine data received

an effective final data sigma of 1.36 cm/s. The differ-

ences between the various lunar GM determinations are

a few parts in 107.

Covariance Analyses

Gravity field error versus order. We have pro-

jected the the 70x70 error covariance of the GLGM-2

gravity solution onto lunar spacecraft orbits, using the

ERODYN covariance propagation software [Englar et

al., 1978]. We mapped the uncertainties and correla-

tions for each spherical harmonic order on near-circular

polar orbits (inclination of 89 °) at altitudes of 25, 50,

100, and 400 kin. This information is summarized in

Figure 8. Kaula's [1966] linear orbit perturbation the-

ory predicts that the order 1 and order 2 m-daily pertur-

bations, with periods of approximately 28 and 14 days,

will produce the largest perturbations on the spacecraft

2 72 60 82

3 54 56 56 83
4 35 27 43 53 82

5 25 61 24 44 52 80
6 51 40 42 23 41 49 78

7 39 35 44 44 24 42 46 74
8 29 29 36 42 39 22 40 43
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Figure 7. Percent change in the coefficient sigmas for GLGM-2 and LGM-309d (GLGM-2 with

no Clementine data), normalized by the sigmas from LGM-309d.
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Table 9. Comparison of Low Degree and Order Harmonics From Satellite Track-
ing and Lunar Laser Ranging

CoeJtlcient a LLR b Lun60d c GLGM-2 d LGM-309d e

J2 204.0 4- 1.0 203.805 + 0.057 203.986 -1-0.131 203.566 + 0.467
Ja 8.66 + 0.16 8.25 4- 0.06 9.99 4- 0.24 8.53 + 0.53
C22 22.50 4- 0.11 22.372 4- 0.011 22.227 4- 0.023 22.413 4- 0.130
C31 32.4 + 2.4 28.618 4- 0.018 28.290 4- 0.098 28.736 4- 0.179
S31 4.67 4- 0.73 5.87 4- 0.02 5.54 + 0.07 6.15 + 0.21
Cz2 4.869 4- 0.025 4.891 4- 0.009 4.886 q- 0.030 4.855 4- 0.075
Ss2 1.696 4- 0.009 1.646 4- 0.008 1.656 4- 0.029 1.618 4- 0.064
C3s 1.73 q- 0.050 1.719 4- 0.003 1.756 4- 0.007 1.673 + 0.038
Sas -0.28 4- 0.020 -0.211 4- 0.003 -0.270 4- 0.006 -0.268 q- 0.035

aAll coefficients are urmormMized.

bLunar laser ranging (LLR) from Dickey et at. [1994].
e60x60 spherical harmonic solution from Konopliv et al. [1993].
dT0x70 sphei-ical harmonic solution from this paper.
eLGM-309d = GLGM-2 with no Clementine data.

orbit (see Figure 8). For a 100-km near-circular polar

orbit, the total position error caused by uncertainties in
the GLGM-2 gravity field will be 1.4 km at order 1 and
1.6 km at order 2. It is 0nly beyond order 15 that the

position uncertainty due to gravity field error falls below
100 m. In a 100-kin near-polar orbit, the total position

error due to the uncertainties in the GLGM-2 gravity
field is 2.5 km. This total position error increases to
4.2 km for a circular polar orbit at 50-km altitude, and

5.7 km for a polar orbit with a mean altitude of 25 km.
These error projections do not include the omission er-

ror of the terms beyond degree 70. The actual gravity
field induced orbit error would be larger than the values

cited here, especially for the lowest altitude orbits.
Projected orbit error versus inclination. Us-

ing the linear orbit theory of Rosborough [1986], the ra-

dial orbit error as predicted by the GLGM-2 covariance

was mapped as a function of inclination, for a near-
circular lunar orbit at an altitude of 100 km. The re-

sults are depicted _n Figure 9. The radial error ranges

from just over 122 m at 29 ° inclination to 1364 m at
129 o inclination. The increase in projected error at the

mid-range inclinations (30°to 140 °) is understandable

give n that only data from predominantly low inclination
satellites have contributed to GLGM-2. Careful exam-

ination of the spectrum also reveals that local minima
occur near the specific inclinations from which satel-

lite tracking data were acquired or at their complemen-

tary retrograde or prograde inclinations (1 i °, 210 , 29 °,

80 °, 90 °, 100 °, 151 °, 159 _, 169°). The data from the
Apollo 15 subsatellite contribute strongly to GLGM-2,

and it can be argued that the GLGM:2 field is strongly
tuned to the orbit of the Apollo 15 subsatellite, since
it has its lowest projected error at that satellite's incli-

nation (1510 , and its complement, 29°). Comparison of
the predicted error from the GLGM-2 and the LGM-

309d (solution with no Clementine data) reveals that
Clementine reduces the gravity field error at the higher
inclinations (600 to 1400 ) by 5-20%. At the inclination
of 90 °, Clementine reduces the radial orbit error from
743 to 554 m.

Summary

We have developed a spherical harmonic model of

the lunar gravity field complete to degree and order
70 that incorporates the tracking data from Lunar Or-

biters 1 to 5, the Apollo 15 and 16 subsatellites, and
Clementine. The Clementine data provide the strongest

satellite constraint on the low degree and order field,
whereas the historic data are indispensable for pro-
viding distributed regions of high-resolution coverage

within +30°latitude. Our solution resolves the gravi-
tational signatures of both farside and nearside basins
and mascons. To stabilize the solution at short wave-

lengths that are not characterized by a globally uni-

Table 10. Comparison of Solutions for the Lunar GM

-:Analysis Description GM, kmS/s 2

Ferrari et al. [1980]
Konopliv et at. [i993]
Lemoine et at. [1994]
This paper
This paper

LLR and LO-4

Ltm60d (60x60)
GLGM-1 (70x70)
GLGM-2 (70x70)

LGM-309d (70x70)

4902.7993 4- 0.0029
4902.79781 4- 0.00122
4902.80263 4- 0.00095
4902.80295 4- 0.00224
4902.80280 4- 0.00603
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Figure 8. Projected total orbit error (1 sigma) from

the 70x70 error covariance of GLGM-2 decomposed by

gravity field order, for near-circular, polar, lunar orbits

at 25 km, 50 km, 100 km, and 400 km altitude.

includes either satellite-to-satellite tracking or a grav-

ity gradiometer to permit direct gravity mapping of the

farside should remain a high priority for lunar science.
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form data distribution, we applied an a priori power

law of 15 x lO-_/l 2. While use of this constraint was

necessary in order to obtain the high degree and order

solution, we note that GLGM-2 fails to exhaust the sig-

nal in the tracking data. Alternative gravity analysis

techniques such as the mapping of LOS accelerations

[Kaula, 1995; Barriot et al., 1995] may be useful for ex-

tracting further information from the data, particularly

on a regional basis in areas of dense, low altitude cover-

age. Although we believe GLGM-2 represents a signifi-

cant improvement in the modeling of the lunar gravity

field, particularly with regard to basin-scale structure,

the fundamental problem in lunar geophysics remains

the lack of global high resolution coverage. The Lunar

Prospector mission is expected to improve significantly

the spatial resolution over the mid- to high-latitude re-

gions of the nearside. Nevertheless, a lunar mission that
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Figure 9. Radial orbit error (1 sigma) predicted from
the 70x70 error covariances of the GLGM-2 and LGM-

309d (GLGM-2 with no Clementine data) gravity so-
lutions for near-circular 100 km altitude lunar orbits.

This radial orbit error is shown as a function of orbit

inclination.
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